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Relaxation in a perfect funnel
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We have exactly solved the relaxational dynamics of a model protein that possesses a kinetically perfect
funnel-like energy landscape. We find that the dependence of the relaxatiorr timeéhe density of states
(DOY and the energy level spacing distributions of the model displays several main types of behavior de-
pending on the temperatufle This allows us to identify possible generic features of the relaxation. For some
ranges ofT, 7 is insensitive to the density of states; for intermediate valudsibflepends on the energy level
spacing distribution rather than on the DOS directly, and it becomes gradually more dependent on DOS with
increasing temperature; finally, the relaxation can also be determined exclusively by the presence of a deep gap
in the energy spectrum rather than by the detailed features of the density of states. We found that the behavior
of 7 crucially depends on the degeneracy of the energy spectrum. For the special case of exponentially
increasing degeneracy, we were able to identify a characteristic temperature that roughly separates the relax-
ational regimes controlled by energetics and by entropy, respectively. Finally, the validity of our theory is
discussed when roughness of energy landscape is adsfE063-651X97)04804-9

PACS numbdss): 87.15~v, 36.20.Ey, 05.20:y

I. INTRODUCTION interesting study is due to Zwanz[@] where some of the
general properties of the folding kinetics were examined us-

It is well known that natural proteins fold into their native ing an extremely simple model.
structures remarkably quickly in times on the ordéd e in Even though there are many folding models for specific
spite of the enormous number of possible physical configuproteins, we believe that it is intuitively useful to investigate
rations[1]. On the other hand, it is also clear that heteropoly-the generic behavior of the folding kinetics. This, in some
mers with completely random monomer-monomer interacsense, is similar to finding universality classes in critical phe-
tions usually do not fold on a reasonable time s¢dleOne  nomena. The purpose of this paper is to report our studies in
explanation put forward to resolve this discrepancy is thathis direction. In particular we examine a simple statistical
protein sequences are “optimized” such that not only ismechanical model that mimics all the basic properties of a
there a stable unique structure for the ground dtatebut  perfect funnel-like landscape in the absence of roughness.
there is also a funnel-like energy landscape that leads to efA/e also discuss the validity of our results for the case of
ficient folding kinetic§4—6]. A principle of minimal frustra-  involving a small amount of roughnegsee below The
tion was proposedl8] to enforce a selection of the interac- landscape itself consists of a set of energy levels forming a
tions between monomers such that as few energetic conflictguasicontinuous spectrum with a single level lying far below
occur as possible. Among other things, considerable theorethis spectrum. All the levels represent conformational ener-
ical effort has concentrated on finding proper models for progies of the protein with the lowest level representing the
tein folding and investigating various sequencings that leadhative state. This model is quite general and is not exclusive
to fast folding kinetics. Due to the immense complexity of to proteins. It could, for example, represent certain classes of
the problem, much of our understanding and intuition hagpolymers.
been obtained from a variety of computer simulations based There are many interesting questions concerning protein
on lattice model$9—11]. folding kinetics that we would like to answer from an analy-

In this paper we concentrate on the folding scenario insis of our model. For instance, for a protein sequence that
volving a funnel-like energy landscapé—6] where the fun-  folds rapidly to its native state, what is the role played by the
nel “guides” the protein into the low energy native struc- energy spectrum along the folding pathway? What is the role
ture. Along the pathway, the protein is believed to goof energy level spacing statistics on the folding kinetics?
through several distinct states including the molten globuldHow does the relaxation process of our system depend on
state, a folding transition region, and a glass transition reparameters such as temperature? These are interesting and
gion. Even though the funnel landscape possesses a certdifficult general questions that are relevant to the folding
amount of roughness, which slows the folding kinetics, thekinetics, since the protein passes through the energy spec-
folding process is largely speaking guided by the global funtrum during the folding process. An analytical answer to
nel structure and the protein can in this way rapidly find itsthese questions for a general protein problem has so far not
native state. Although there is no clear experimental evibeen possible. However, as we show below for our model,
dence of the existence of this folding scenario, it is neverthewhich is a generalization of that studied in REf], analyti-
less theoretically interesting and has attracted much attentioral solutions can be found when the funnel structure has no
in the literature. In general, the folding kinetics for funnel- roughness and reasonable approximations could be made to
like energy landscapes is very complicated and analyticaind an answer when small roughness is included. Our per-
studies have proved to be quite difficult. In this regard, anspective is that exact solutions are valuable since they can be
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used as a starting point for further more complicated models, ECO
similar to our experiences in critical phenomena and phase
transitions.

To this purpose, we have derived analytical expressions
for our model(see below that show that the energy spec-
trum and the energy spacing statistics can play an important
role in folding kinetics. In particular the dependence of the
folding time 7 on the energy level distribution of the various
models can be classified into three main types of behavior
depending on the temperatufe For a considerable range of
T, 7 is insensitive to the level distribution; for intermediate
values of T it depends directly on the distribution and be-
comes gradually more model dependent; finally, in the third
case the folding kinetics is determined exclusively by the
presence of the deep gap in the energy spectrum rather than
by the details of the energy level distribution. We found that E, X
the behavior ofr crucially depends on the degeneracy of the
energy spectrum. For the special case of exponentially in-
creasing degeneracy, we were able to identify a characteristic FIG- 1. Schematic plot of the perfect funnel-like energy land-
temperature that roughly separates the relaxational regim&§ape in reaction coordinate space. The energy spectrum has a low
controlled by energetics and by entropy, respectively. Ou,,ymg_g_round state with em_ar@:o and a quasicontinuum part that is
general formula for this simple model is consistent with ex-SPecified by the levelf; with i <[1,N].

isting literature in the appropriate limits and we present nu-

merical solutions to confirm the physical picture indicated bysmce no roughness |s.|ncluded In the moc_iel. On the other
our analytical results. hand, if the landscape is very rough indicating entanglement

This paper is organized in the following manner. A gen-Of the polymer or protein, Metropolis rates Wi." not be ad-
eral expression for the relaxation time is derived in Sec. ”_eqlu%teb. 'll'he Metropolis rates satisfy the requirement of de-
Sections Ill and IV presents results for the applications ofidlled balance,

this expression. Finally a short summary is presented in Sec.
V.

W(X—X+1)Px(eq=W(X+1—-X)Py,(eq), (1)

where Py(eq) is the equilibrium distribution given by a
Il. RELAXATION KINETICS Boltzmann factor. Usingyy and gy, as the degeneracies
. of the X and X+1 energy levels, one can then

By analogy with Ref[7], we focus on a perfect funnel- introduce the following transition ratesW(X—X+1)
like energy landscape defined by an abstract “reaction coor= (g . /g Yexd —(Ex.1—Ex)/T] and W(X+1—X)=1.
dinate” X. For exampleX could represent a specific protein The second condition, which is independent of temperature
structure that has enerdy(X). We emphasize again that 1 corresponds to the zero roughness ong) landscape.
whether or not a real protein possesses funnel-like energy The folding or relaxation kinetics is studied using a mas-
landscape is unclear, but we shall examine the consequencgs equation. We focus on the probability,P;
of this landscape. A perfect funnel with no roughness iS(i=0,1,2,. ...N), of being at energy leveE; during the
schematically shown in Fig. 1. Clearly this is a considerableq|axation. Introducing variablesy,=exp—AF, /T where
simplification of the problem, but it allows us to investigate AF=F,,,—Fiie{ON—1}, and F,=E;—Ting we can
the relaxational kinetics completely analytically. As dis-jte down the following matrix equation for the evolution
cussed below, other features can be systematically added @f e probabilities:
later, such as a small amount of roughness.

Thus, as the system relaxes or the “protein” folds, it rolls dp
down the funnelE(X), to the final native structure charac- — =AP, 2
terized by energyg,. Now a particular model can be de-
scribed in terms of its energy level distribution or its density
of states. Here we consider the situation where thereNare
guasicontinuous energy levels with density of stddd€)

where the matrix coefficient is given by

and one distant levet,, lying at a distance\E, below the %o 1 0 0
quasicontinuous spectruiisee Fig. 1 During the folding a —1l-a 1 0
process(relaxation procegswe assumg7] that in any tran- A= 0 ay —1-a, 1 o )
sition between configurationX, changes only by- 1, which

means that the system performs a nearest neighbor random 0 0 2 —1l-a

walk in one-dimensional reaction coordinate space. For the

perfect funnel energy landscape considered hére X+ 1

also implies that energy transitions only occur between near- Because the total probability is a constant, the maris
est neighboring levels. In this work we use Metropolis tran-thus degenerate and there are oNlyndependent probabili-
sition rates, the same as used in R&f, which is justified ties out of a total ofN+ 1. We denote the average nearest
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neighbor energy level spacing hy. We then make the rea- — 1. Because of the simplicity ofL andS®, (S°5L)'=0 for
sonable assumption that< A E,, which is basically a con- alli=N. After lengthy but straightforward algebra we obtain
sequence of having a spectrum with a few low lying energy

levels and a quasicontinuous part in the upper part of a spec- 1 0 0 0

trum. Several limits can be obtained directly from the form @y 1 0 0

of the matrixA. For 0<T<U and U<T<AE,, A essen- M~ 1l= aias s 1 0 .| <. (5)
tially becomes a constant matrix largely independent of tem-

perature except with only a few temperature dependent terms arapey axay a3 1

and thus the folding kinetics is independent of the energy

spectrumD (E). The same is true for very high temperatures
where entropy is the dominant factor. At temperatures 7=-Tr(M ™ ')=N+a;+ar+ - - +ajar+arazt- -
T~AEy>U, almost all matrix elements ¢k become con-

stants except those few involving energy differences compa-

rable to theAE,. This suggests that in this case the folding  \We now solve the problem in general for dll To find
kinetics is exclusively determined by the presence of the gaghe relaxation timer of this perfect-funnel model, we use the

in the energy spectrum while almost all quasicontinuous levfact that the total probability is conserved, i.e., that
els are already excited.

A nontrivial result was obtained for the temperature range
T~U. Here the kinetics can substantially depend on the en- PO:l_Z‘l Pi. @)
ergy distribution of the quasicontinuous part of the spectrum.

We first find a relaxation time at temperatures small enougiThen Eq.(2) is equivalent to
that one can disregard the rate of escape from the native

+ajara3+ - - -, (6)

N

state. In this range the master equation (8f becomes dpP’ — —

dP,/dt=P; and gt = @09+ (M= agdM)P’, (8)
d_P': MP’ 4) where?z{l,o,o, .. }. Thus the kinetics will be determined
dt ' by the matrix M — ay6M), wheredM is a matrix with the

_ first row consisting of 1 and the rest of the elements equal to
whereP’ is a vector P,P,, ... ,Py). The matrixM is a  zero. As discussed above, the relaxation time of the system
submatrix ofA without its first row and first column. As the can be found as the trace oM ayéM) 1. To compute
relaxation proceeds, i.e., when our system rolls down thehis trace we use the perturbation expansion introduced
perfect funneE(X), the total relaxation time from the high- above and seek an inverse matrix in the form
est energy leveE to the lowest oné&, gives a measure of
the relaxation time. To determine this relaxation titpgwe (M—agdM) " 1=H g +H+Hp+ . 9
notice that the system has relaxed when all states Rith
ie{1N}, have been sequentially relaxed. Therefore
;{,\rﬁlt; IEDi’i\‘_lti , Wheret; are the relaxation times for the states I=(M = aodM)(Ho)+Hey +Hzy ),

It is worth pointing out that at low temperatures the relax-we find a set of equations fét() that can be solved to give
ation time of a system coincides with its folding time into the 4 ()= M~ (¢, MM ~1)', whereM ~* is found earlier and is
ground (native) state because the native state at these tenyiven by Eq.(5). Hence,
peratures is an equilibrium state of the system. As tempera-
ture increases, however, the equilibrium state of the system(M — aoéM) =M 11+ ag(SMM 1)+ aé( SMM ~1)?
shifts to the quasicontinuous part of the spectrum. Hence
t,e; Will characterize the folding time to the appropriate equi- T
librium. Keeping this in mind, we now calculatg,. From
Eq. (4) we haves jt;=—3N  1/\; where\; are the eigen-
values of the r_natrl_x;/l. As detM)#0, 1A\, are the eigen- R=1+ai+aia 1+ @izt +ai - ay_1
values of matrixM ™. In this way we finally obtairt, in (10)
terms of the trace ok ~* sincet,g~—Tr(M ).

The calculation of Tril ~1) is lengthy and is included in one can easily show that the required inverse matrix can be
the Appendix. Here we outline the main steps. We noticenritten as
that M=L+ 6L, wherelL is a constant matrix andL con- 1 a1 1 1
tains the temperature dependent elementsofWe seek (M—agéM) *=M""+ aoM " *6MM " {1—(aoRy)

M~ in a perturbative form given b ~*=3;5S0. it (@R (agRy)%+ - 1. (11)
turns out that this sum only has a finite number of nonvan-

ishing terms and can thus be summed exactly. Essentiallyfhis is an important result and the trace of this matrix gives
from MM ~1=1 one derives a set of equations f8{) that  the relaxation time of our model.

can be solved to give)=(—1)(S6L)'S’, whereS? is a Formally the sum in the brackets of E€L1) is a geomet-
triangular matrix with all the upper right elements equal toric series, which we can rewrite in a more compact form:

Using the identity

Introducing a new quality
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a =11+ 715, 1
(M—apoM) 1=M "1+ — 2% M-1sMM~L (12 T2 an
1+ aoRy where
Strictly speaking the summation of the series is allowed only N-1 N-i
when agR;<1. Thus in principle we should use E@L1) m=| N+ E 2 @ @jriog (18
when this condition is not satisfied. It turns out, by numerical i=1j=1
comparisons, that Eq12) is correct even forgR;>1. Even N
though this indicates that there is most probably a more di- 2 exp(F IT)
rect way of deriving Eq(12) rather than via the series ex- =
pansion used here, we use Ef2) to proceed further and M= Z—' (19
present numerical confirmation of this procedure later. 0
The relaxation time is then given by Because this result is quite complicated, we first apply it in
the next section to various specific situations, and then
_ -1, % 1 -1 present numerical results obtained using the general expres-
(M=) 1+ aoRlTr(M SMM™). (19 sion of Eqs.(17)—(19).
Using the explicit forms of the matrices as given by Eg). Ill. THE ROLE OF LEVEL STATISTICS

and éM, after lengthy but straightforward algebra we obtain

and

_ As a first application of the result given by E{.7), we
N1 N-i examined the case where the energy levels are nondegener-

Tr(M~YH=N+ 21 21 Q- @iog (14  ate, i.e.gx=1 for all X, then local free energF,; coincides
i=1 j=

with the energ)E; . In this limit the expression for the relax-
ation time can be greatly simplified. Also, we shall focus on
low temperatures. In this case we shall prove that the relax-

Tr(M™ISMM Y =R;+(R;+Ry) a3+ (R, + Ry+ Ry) gy ation time 7 is determined by the energy level spacing dis-

tributions. These distributions can be computed from the
tooot (Rt +RY @ -an-g density of state® (E). Since very different models, i.e., dif-
(15) ferentD(E)’s, can give quite similar spacing distributions,

the relaxation in this temperature regime is quite generic. In

If we definez; asz;= EN iexp—F;/T, Z; is then the par-  the next section we shall show that even wigge- 1, similar
tition function for theN—| energy Ievels starting atand  conclusions can be reached if the temperature is lower than
R; is given byR;=Z;exp(;/T). The above results can then some characteristic temperature.
be considerably simplified and the expression#drecomes

\ A. The relaxation time

> Z2exp(F;IT) For temperatures much smaller than the energy gap be-
Ly, 0=t ' ' tween the ground state and the first excited stAtg,, and
T=—Tr(M )= Zo ' (16) taking into account that there are no exponentially divergent

pieces in the second term, of Eq. (17), we can safely

Using Egs.(14)—(16) we arrive at the main result of this neglect#, since it is much smaller than the; term. Fur-

work,

thermore we notice that

Ejir1—Ej+E o Ejat+E i —Eji g
Qg .. Ajyi1= EXP— T

E . —E.
= exp— % (20)

The relaxation timer can therefore be expressed as followswhich measures the probability thit,;—E; equalsS for
in terms of the level spacing probability: all level indicesj. Using this definition we find

N—i

i o S
P(i)(S)EJZl o(Ej+i—Ej—9), j§=:1 aj- 'a'j+i71:f0 p(i)(s)exl{ _f)ds
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From Egs.(17) and(18) we obtain +oo
P1)(S)= N(N+1)J_m D(E)D(E+YS)

E+S
1—j D(t)dt
E
It is clear that small values of the level spaciBgive the

largest contribution to the integrals in E@®1) and this is |t is easy to see that D(E) is substantially larger than zero
especially true for low temperatures. On the other hand, fopn  an  interval ¢, then due to the factor
higher order energy level spacing distribution®;)(S) is  [1— fE*Sp(t)dt]N~1), pay(S) will also be substantially
small for small values o8. Hence, for lowT the term con-  |grger than zero on a scale ¢fN. If S<1, in the N—o
taining the nearest neighbor spacing distributippy(S), i |imit we can expand the integrand to obtain
most important in determining the relaxation timeAs T
increasesr begins to depend on higher order energy level N (SN)! [+
spacing distributions. Since more and mg(g(S) begin to p(l)(S)=N(N+1)2 (—1)'i—| D'"2(E)dE.
play a role asT increases, we expect the model details to 1=0 T 25)
become increasingly important. However, it is easy to show (

thatp;)(S) for largei must be universal: as the levels are far prom £q.(25) it can also be deduced that the scale on which
e_lpart there is little level correlation anq the spacing distribu—p (S) is substantially greater than zeroG{1/N). Further-
tion therefore approaches a Gaussian. Hence we_expeglyre. it is clear from Eqsi23) and (25) that P;(S) is de-
model independence to return whenreaches valuesU.  termined by the values of a set of definitéegrals of the
Finally, if p;)(S) is less sensitive to model peculiarities than density of states distributiorD (E), and its powers rather
the density of stated)(E), we expect that the relaxation than the specific details of the level distribution itself.
kinetics measured by the relaxation times approximately How sensitively doeg(;)(S) depend orD(E)? Consider
generic as it only depends on several low order spacing diswo completely different models specified b, (E)
tributions in this low temperature range. We shall confirm:exp(_ E) with Ee[0,+%], and D,(E)=[(d+1)/
this picture by computing;)(S) and in particulap(1)(S) in - gd*11E9 with E<[0,E,] andd>0. Using Eq.(25) we can
terms of D(E). explicitly compute the nearest neighbor spacing distribution
p)(S) for the two models. It is easy to show that both
B. The spacing distribution models give the same form gf,(S) for large values of the
To relate P;,(S) to the density of state®(E), which parameted. Furthermore, even fod~O(1) the difference

specifies our models, let us take any two energy level$ only ~(d+1)/d. The fact that the two chosen forms of
and consider the probability that the first level lies in theD(E) are considerably different from one another shows that

interval [E,E+dE] while the second level lies in different models described by different forms D{E) can
[E+S,E+S+dS]. To find p;,(S) we use an approximate have similar nearest energy Ieve_l spacing dlstrlb_u_tlons.
approach{13—15 analogous to mean field theory in which Hence they can have ;lmllar relaxation times as specified by
the energy distributiorD (E) is assumed to be locally ran- EQ- (21) in the appropriate temperature range.

dom. This allows us to use a simple approach based on prob-

ability theory. First we note that there are 1 levels in the IV. A MORE GENERAL CASE

interval[ E,E+ S] and the remainin@l—i levels are outside
this interval. The probability for this to occur is proportional
to [12]

(N-1)

N—1 too s
T:tre|~N+ z J' p(i)(S)eX;< - T) ds (21)
e dE. (29

X

In Sec. Il we considered the case in the absence of level
degeneracy. In that case the relaxation time can be expressed
in terms of the level spacing distributions. However, when

E+S (N=i) some of the energy levels are degenerate, we were in general
D(E)D(E+YS) 1—f D(t)dt} not able to write Eq(17) in a simple form like Eq{(21) in
terms of the level spacing probabilitg;)(S). In addition if

E+sS (i-1) the degeneracgy of the energy levels rises exponentially as
f D(t)dt} ds dE (22 the number of the energy level increases we cannot neglect
E the 7, term even if the temperature is much smaller than
AE,. In this more general case, the level degeneracies and
' the energetics will compete to control the relaxation. Thus

we expect the relaxation time to have a nonmonotonic

X

Integrating ovetE and normalizing the resulting expression
we obtain

too E+S (N=1) behavior as the temperature is changed. In particular, a char-
p(i)(S)ZCf D(E)D(E+YS) 1—f D(t)dt} acteristic temperaturg; is found that roughly separates the
- E relaxation regime, which is controlled by energetics and the
E+s (i-1) regime controlled by entropy.
X fE D(t)dt dE, (23

A. The characteristic temperature

whereC is the normalization factor. In spite of its involved = We now examine the special case of level degeneracy,
appearance, this equation is easy to investigate. For examphhich is approximately realized in protein spedira where
considerp(1)(S), which is written as gx~ v~ and y is a constant greater than unity in this case
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local free energyF; equalsF;=E;—ilny. In this case it is the characteristic temperature can also be obtained by the
easy to show, using Eq17), that corlleer?Lence criterion for the series of Ed.1), namely,
apgh1=1.

We may conclude from our discussions that as soon as
our system has energy levels with increasing degeneracies,
there exists a temperature scalethat is determined by the
\ average level spacing of the spectrum and the degeneracy

> parametery. Close toT; the tendency of increasing entropy
izl Ziexp(Fi/T) overcomes the tendency of relaxing into a state with lowest
- energy, and this leads to a sharp increase in the relaxation
Zo time of our systemsee below for numerical calculations

) Thus we expect a change in the behavior of the relaxation as
It is easy to_show that the), term as a whole scales as temperature is varied by crossifig. In this sense, the char-
exdN(Iny—U/T—Ey/NT)] for temperaturesT>U/Iny, and  acteristic temperaturd; can be regarded as the “folding
the temperature at which this term becomes order unity igemperature.” This is indeed what is observed in Réf for
given byT;~ (U + Ey/N)/Iny, which is comparable with the situations similar to that discussed in the last paragraph. Nu-
average level spacing and becomes independent of thaeerical results for this case will be presented in the next
ground state energye, as N approaches infinity. For subsection.

T>T¢, |n,| is a rapidly increasing function ol and at For T<T;, we can again neglect thg, term, and the
T~T; the two termsp, and 5, become comparable. relaxation time can be expressed as

Our results show that the relaxation time of the model
involves competition between the two terms and ,. The N-1 .. S
fact that| ;| becomes comparable withy,| at T; implies a =t~ N+ >, f p(i)(S)ex;{i Iny— f}ds. (26)
change of behavior as temperatdrés swept acros3;. To =170
gain further intuition concerning the behavior of the system
atT=T;, we examined the limit for which all thd levels in ~ Similar to the discussion in the last section, it is clear that as
the quasicontinuous part of the spectrum are equidistant arfi€ temperature increases from zeroTig = becomes in-

U is the energy difference between any two adjacent levelscreasingly dependent on the higher order energy level spac-
Again let AE, be the distance between the native state andng distributions. However, whefi~0, 7 is only determined
the lowest energy of the quasicontinuous part of the spedy the nearest neighbor spacing distribution(S). Thus

trum. The equilibrium probabilities of each level will then the relaxation at very low temperatures is still generic in the
become sense of the discussion in the last section, namelig, in-

sensitive to the density of stateqE).
exp(AE,/T) For proteins in 'general, 'it is reasonable to assume that the
= eXp(AE/T) + (KN— /(K1) numl?er of levels is Iqrge, i.e., thBt—co. Then the charac-
teristic temperaturd; is of the order ofU/Invy. In order to
examine higher temperatures, we first considlerT; and
the %, term as given by Eq26). In this case the exponential
i in the integrand of Eq(26) is larger for larger values of the
— K summation index. Therefore forT>T;, only higher order
expAEo/T)+(KN=1)/(K-1)’ energy level spacing distributions;,(S) play a substantial
role. However, as mentioned above;(S) approaches a
whereK = exp(Iny—U/T)=exdIny(1—T;/T)]. Here we have Gaussian for largé and hence the), part of the relaxation
definedT;=U/Iny. BecauseN is large, this expression for time again becomes generic for>T;. In addition, it is easy
K together with the expressions By and P; above shows to see that the leading contribution in thg term is due to
that for T<T; the population of the energy levels will be the difference in energies between the highest and the lowest
given by Py~1 andP;<P, for all i e {1N}. The equilib- energy levels foilT>T; and is of the order of exp{S)/T).
rium state of the system is then the ground state of our spe&ince this also defines quite general properties of a given
trum. For T>T;, on the other handP;<P;,, for all i model, we expect weak model dependence forthéerm as
e{0,N—1}, so that the equilibrium state will be shifted to well. Hence we conclude that above the characteristic tem-
the upper part of the quasicontinuous spectrum. Hence fgoerature, the relaxation time is only weakly dependent on the
T<T; or T>T; the equilibrium state of the system is rela- detailed features of a given model.
tively well defined. In the case wheér~T; all the levels in The major model dependence is expected in the range
the spectrum become almost equally probable and hend®<T=T;, while T; itself is determined by the degeneracy
large fluctuations can be expected. From the kinetic point oparametery and average level spacing. The striking feature
view, this means that ai~T; the fluctuations lead to slow of the current case is that dsreachedT; there is an increase
relaxation and thus large values of In this sense this be- in the dependence of on the higher order energy level
havior is similar to the well-known *“critical slowing down”  spacing distribution: at very lowW it is p(;)(S) that deter-
found for critical phenomena. From this argument it follows mines 7, while aboveT; it is the higherp;(S) that is re-
that for T~T; one should expect the occurrence of a maxi-sponsible. The important conclusion is that it is possible for
mum in the relaxation time of a system. Finally we note thatdifferent models that correspond to different density of states

N—1 G S
T=F 7= NJriZ1 fo p(i)(S)exr{ilny—%dS

Po

and

P;
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FIG. 2. Logarithm of the relaxation time as a function of FIG. 3. Characteristic temperatufe as a function of the level
temperaturd for various degeneracy parameterss indicated by — degeneracy parametgr The unit ofTy is the level spacing). The
the numbers near the curves. The uniffois the level spacing), ~ Solid line is obtained fromT~U/Iny+AEy/NIny. The solid
and an arbitrary unit is set far. The solid squares were computed Squares in this figure correspond to the temperatures at which the
from a direct numerical inversion of the matriM(- aq6M) of Eq. relaxation time achieves its maximum, i.e., the peak positions of

(9) followed by a calculation of the trace oM—a,6M) 1. The  Fig. 2. These two prescriptions give nearly the same values for
solid lines were calculated using the analytical form of EL7). Ts.

Clearly these two methods give exactly the same answers through-

out the whole temperature range.

The relaxation timer as a function of temperature for
various degeneracy parameteysis shown in Fig. 2. We
D(E) to have similar spacing distributiong,)(S). If thisis  computedr in two ways: either from a direct numerical in-
the case the folding time is weakly sensitive to the details of/ersion of the matrix 1 — ¢qdM) of Eq. (9) and then find-
a given model in the lower temperature rarg&U for the  ing its trace, or by using the analytical form of E@.7).
nondegenerate models amek T; for the degenerate models. Figure 2 shows that these two methods give exactly the same
results throughout the whole temperature range, justifying
the mathematical procedure that led to ELj). Several ob-
servations are in order. First, when the energy levels are
nondegenerate, i.e., wher= 1, there are no entropic effects
Although we have obtained all our results analytically, itin the model and the system simply rolls down the perfect
is useful to obtain some numerical data as this gives considunnel landscape in the relaxation process. In this case there
erable intuition about the relaxation kinetics of the modelis no characteristic temperatuifig and = is completely de-
studied here. For this purpose, we employ the model of Rettermined by the energy level spacing distribution, as dis-
[7]. In particular we assume that it hilsenergy levels with  cussed before. Secondly, for cases with increasing level de-
equal nearest neighbor spacingsn its quasicontinuous part generacies, i.e., fory>1, the relaxation time shows the
and AE, below is the ground state. We assud&,>U.  expected maximum. Also the position of the maximum is
The degeneracy of the quasicontinuous part is given bgxactly at the characteristic temperatiie(see below. The
¥'~1, wherei is the index of energy level. In the calculations behavior is consistent with that reported in REf]. Finally,
we usedN=100, U=1, and the energy gap between thethe “transition” at T becomes sharper ag is increased.
ground state and the bottom of the quasicontinuous part ofhis is expected, as it is similar to the situation that occurs in
the spectrum\Eqy=12. a finite system where a thermal phase “transition” becomes
Then from our general result given by H47), the relax-  sharper when the degree of freedom is increased.
ation time can be easily calculated and we obtain, for the In Fig. 3 the characteristic temperature as obtained from

B. Numerical results

whole temperature range, Ti~U/Iny+AEy/NInyis shown as a function of the degen-
\ \ ) eracy parametey. From this expressiom; decreases mono-
T:NK _1—K(K —1> tonically as y is increased, which must be true because
K-1 K-1 higher degeneracies of the energy spectrum lead to higher
N NP1 ) entropies involved: The data_ points in this_ figure were taken
_ E (K - 1) Ki-1 Qo from the peak positions of Fig. 2 and are in good agreement
“= K—1 1+ ag(KN=1)/(K—1)" with the theoretical definition. Hence we conclude that

takes maximum values at the characteristic temperdature

(27)

Here K=y exp(~U/T) and the prime means differentiation C. A discussion on the effect of roughness

with respect toK. A simpler expression can be obtained So far our analysis is rigorous when the energy landscape
when the limitN—o° is taken. is a perfect funnel in the absence of roughness. Including



55 RELAXATION IN A PERFECT FUNNEL 7361
arbitrary roughness will make the problem essentially unimodels it is natural to use the measure of compactness, such
solvable analytically. However, under the assumption thags the total number of nearest contacts, to specify the energy
the roughness is small, our analysis can be extended to esstates. IfC, is the maximum number of contacts for a poly-
mate the effects of it. In this section we will not attempt amer with L monomers, then we may defit — X to give
rigorous treatment of the influence of roughness on the polythe total number of contacts at enenfggX). It is reasonable
mer dynamics. Rather, we will specify in what way the re-to assume that for a structure with a larger number of con-
sults of our theory will be modified if roughness is included. tacts, more interaction parameters are involved in computing
Our analysis follows the work of Leite and Onuchic7]. the energy. In general for a given distribution of these pa-
The energy landscape roughness can be modélddoy  rameters, the energy bandwid#t is thus larger. For this
a distribution of states at a given value of the reaction coorreason we expect a decreasifif(X) asX is increasedal-
dinateX. The roughness is considered small if the width ofthough the level degeneracy® is increasing Hence the
the distribution is smaller than the average energy levelalidity of the perfect funnel results can be assessed by using
spacing in the spectrum. Then, each energy le=€K)  the largestSE(X) appropriate to the lower part of the spec-
considered so far can be thought of as being “smeared’'trum and the discussion of the last paragraph.
out by an energy probability distributiong(X,E)
=1/[ 2w SE(X) 2] 2%exp{—[E—E(X) [2/26E(X)3}. Here
SE(X) characterizes the “strength” of the roughness or the
width of the energy band corresponding to a particular value
of X. For this roughness model, following R¢L7], a useful

V. SUMMARY

This work was motivated by a particular protein folding

concept that arises is a coordinate-dependent phase transitighc 1o 10 baseq on a funn_el-hke energy landscape. We stud-

[17]. After the introduction of small roughness, the narrow'ed the relaxational behavior when a system possesses a per-
' fectly smooth energy funnel. Our model is specified by a

band of states withidE(X) can be considered to be asub-d itv of state®(E) for th iconti t and
system with its own dynamics. This consideration predicts ensity of state)(E) for the quasicontinuous part, and a

[17] that for an energy band with coordinaxethere is a very low ground state levek,. Th_e Ieyels of fche quasicon-_
critical temperature To(X) = SE(X)/[2InQ(X) ]2 where tinuous pgrt may have exponentially increasing degeneracies
Q(X) is a number of conformations corresponding to thecharacterlzed by a degeneracy paramgtdecause the fun-

level at X. If T<To(X) for a particularX, the band at nel is smooth, the relaxation is very simple and can be ob-

. . N . tained by using Metropolis rates. Indeed, the problem has
E(X) will behave in such a way that the dynamics inside thISbeen solved in closed form for the whole temperature range

band is glasslike. This means that the system will tend to b?n the absence of roughness
frozen in a few low lying states of this band while relaxing We found that the dependénce of the relaxation tinom

inside it This effect_W|II have an important mﬂ_uence_on thethe energy level and the level spacing distributions of the
relaxational dynaxmlcs. In the case of protein folding wWe . odels displays three main types of behavior depending on
model 1%(X)~7 , and  therefore Tc(X)=oE(X)/ the temperaturd. In the case where the energy levels are
[2X Inyl"™®, whereX=0,1.2,... .. . . nondegenerate, a general formula can be obtained relating
. Although 5E may depend ex_pI|C|tIy OIX, let us first con- 7 to the level spacing distribution. Becauseis largely
sider the I|m|t|ng. case WhedE is a constant over the spec- speaking determined by the nearest level spacing distribu-
tum. In this case for system temperature tion, which we have shown to be only weakly dependent on

1/2 — 2 :
T= 5E/(§X|?’) _t:e:el arr—.;_llz—”((&jE/T) _1/2|n?|’_h|0v‘|’ lying h D(E), we conclude that the relaxation behavior can be said
energy bands with “glasslike™ dynamics. The lower the " o pinit “universal” features. In the degenerate case,

tempiratl:]re, tlh(; Tgre ”‘?ZGT‘ biamds WOU'? be Ir;the fsys'which is more realistic for protein models, a characteristic
tem. As the global dynamics involves a total number o en'temperature'l'f is found that separates the relaxation regimes

; i Noi— N+L
ﬁ.\rgy Stfltes that is pr_oportlonal By =y /(7_ 1), a dominated by energetics or by entropic effects. Hence in this
global” phase transition temperature can be estimated, fOI'senseTf can be thought of as a “folding temperature” for

H g _ 1/2 H _ ) |
lowing Ref.[17], asT¢ fE/(ZNan .W.hereN is the num the model studied here. We found thas weakly dependent
ber of energy bandsN=maxX}). It is important to com- 5 yhe specific density of states of a given modeT#T;
pare this temperature scale with the folding temperaturg .o becoming more and more model sensitiveTasp-

discussed previously[~U/Iny. The number of “frozen”  proachesT;. Again, atT>T; the system becomes almost
levels at the folding temperature if~(SE/U)%INyY2  insensitive to the detailed features D{E). AcrossT; the
=TINY4/T;. This number can serve as a criterion for therelaxation time shows a maximum, indicating the “folding
definition of roughness “strength.” One can easily see that iftransition,” in agreement with the earlier model of Zwanzig
the roughness)E<U, thenl;~1. We thus conclude that [7]. A possible experimental study of the relationship be-
only a few low lying energy bands witKi~1 are frozen at tween the energy level distribution and folding kinetics as
T¢. In this case the results derived from a perfect funnelexamined by our model would involve a systematic study of
should be applicable for temperatures T;, and the relax- several proteins using a combination of thermodynamic tech-
ation kinetics can be slowed down in the lower part of aniques such as calorimetf{6] and folding assays.
spectrum near the ground state. The discussion presented here is only valid for a perfect
The above discussion is for a constaiit and more real- funnel-like energy landscape, i.e., that of a “good” protein
istically there isX dependence of this quantity. For protein sequence. The connection to a particular model is through
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the density of state®(E), which can always be obtained -1 1 0

numerically. If small amount of roughness is added via a 0 -1

finite width of the energy state distribution for a particular

reaction coordinat&, the validity of the perfect funnel re- M=|| 0O 0 -1 1

sults can be examined following the approach of the recently 0 0 0O -1

published work of Ref[17]. In general, our theory correctly

describes the kinetics of the model system including rough-
ness in a tempearture range- Nl’ZTg: below this tempera-
ture kinetics slows down by the roughness and approach

. . . X a; —a, O 0
glassylike dynamics af~T¢. As discussed in the last sec-
tion, T¢ is small for small amount of roughnegsmall + a —az O (A1)
5E) . 0 0 a3 —Qy

Finally we comment that while our work was motivated
by the protein folding problem, the model is, however, only
specified by the density of states and relaxation in a perfeqt can be verified that matrix. ~* takes a triangular form
funnel with a low lying ground state. Thus the formulas de-wjth all the upper right elements equal tol. To find
rived here are applicable to any other situations where §-1 \we seek for a series fordl ~1=3."%S. The proper
similar arrangement applies. On the other hand, as far asypressions of matrice® are obtained by using the equality
protein folding is concerned, the model studied here posy,-1p1=| where! is the unit matrix. Expansion of this
sesses many features of more realistic models. equality gives E;%S)(L+4dL)=1. Gathering terms in

equal powers ofSL we obtain the solutior8’=L"! and

S'=(-1)(s%L)'s".
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LsL=|| 0 a, O (A2)

© ©o o

This is a triangular matrix with an empty diagonal. It is well
known that for anyN X N triangular matrix with an empty
diagonal, thath power of this matrix gives a zero matrix if
i=N. Hence we conclude that our series expansioMoft

is, in fact, a finite series. Summing ttNe—1 nonzero terms
we obtain the result

APPENDIX

In this Appendix we derive Ed5). From matrixA of Eq.
(3), we obtain matrixM by deleting the first row and first
column. HenceM =L + 6L can be written as

1 0 0 O 1 1 1 1
a, 1 0 O a, 1+ aq 1+ ay 1+ aq
M~ I=|| aias ay 1 0 L i=—|| ayay astajay, l4+ar,+aiay 1+a,+ajas . (A3)
ajara3  asaz a3 1

This gives the result of E¢5). One can easily verify this result by direct multiplication to confikhM ~1=1.

Proc. Natl. Acad. Sci. USA9, 8721(1992.

[5] P.G. Wolynes, J.N. Onuchic, and D. Thirumalai, ScieB6&
1619(1995.

[6] J.N. Onuchic, P.G. Wolynes, Z. Luthey-Schulten, and N.D.
Socci, Proc. Natl. Acad. Sci. US82, 3626(1995.

[7] R. Zwanzig, Proc. Natl. Acad. Sci. US®2, 9801 (1995.

[1] See, for example, articles iRrotein Folding edited by T.E.
Creighton(Freeman, New York, 1992

[2] J.D. Bryngelson and P. Wolynes, J. Phys. Ché&®,. 6902
(1989.

[3] N. Go and H. Abe, Biopolymer20, 991 (1981).

[4] Peter E. Leopold, Mauricio Montal, and Jadelson Onuchic,



55 RELAXATION IN A PERFECT FUNNEL 7363
[8] J.D. Bryngelson and P.G. Wolynes, Proc. Natl. Acad. Sci. Maxim Skorobogatyyunpublishegl
USA 84, 7524(1987). [13] M.L. Mehta, Random Matrices and the Statistical Theory of
[9] J.D. Honeycutt and D. Thirumalai, Proc. Natl. Acad. Sci. USA Energy LevelgfAcademic, New York, 196)7
87, 3526 (1990; Biopolymers 32, 695 (1992; Z. Guo, [14] V.1. Abkevich, A.M. Gutin, and E.I. Shakhnovich, J. Chem.

D. Thirumalai, and J.D. Honeycutt, J. Chem. Ph9%, 525 Phys.101, 6052(1994.

(1992. [15] A. Pandey, Ann. PhygN.Y.) 119 170(1979.
[10] E.I. Shakhnovich and A.M. Gutin, Natu6, 773(1990. [16] Y. V. Griko, E. Freire, G. Privalov, H. van Dael, and P.L.
[11] A. Sali, E.I. Shakhnovich, and M. Karplus, Natus&9, 248 Privalov, J. Mol. Biol.252, 447 (1995.

(1994. [17] Vitor B. P. Leite and Jos&N. Onuchic, J. Phys. Cheni0Q,

[12] The details of the calculation will be presented elsewhere. 7680(1996.



